Sample-Efficient Hyperparameter Optimization of an Aim Point Controller for Solar Tower Power Plants by Bayesian Optimization

Author:

Zanger DavidORCID,Lenz BarbaraORCID,Maldonado Quinto Daniel,Pitz-Paal RobertORCID

Abstract

This work introduces a sample-efficient algorithm to optimize the control parameters of an aim point controller for solar power tower plants. Optimizing the control parameters increases the performance of the aim point controller, and thus the efficiency of the plant. However, optimizing the parameters in simulation will not yield the true optimal parameters at the real plant due to mismatches between simulation and reality. Thus, optimization must be done at the real tower to find a true optimum. As this can be time consuming and costly, the optimizer should require a minimum number of steps. Hence, a sample-efficient optimization strategy is needed. This work introduces a new algorithm based on Bayesian Optimization (BO), which leverages multiple sets of simulation data to accelerate the optimization. The algorithm is tested on a six-dimensional test function representing an arbitrary aim point controller. The proposed algorithm outperformed standard Bayesian Optimization by reaching near optimal parameter configurations of 95% accuracy within 33% less optimization steps. In a second test, the proposed algorithm is used to optimize a simulated Vant-Hull aim point controller with two hyperparameters. Here, the algorithm also needs 33% less optimization iterations than the standard BO.

Funder

Bundesministerium für Wirtschaft und Energie

Publisher

TIB Open Publishing

Reference14 articles.

1. K. Chatzilygeroudis, V. Vassiliades, F. Stulp, S. Calinon, and J.-B. Mouret, “A survey on policy search algorithms for learning robot controllers in a handful of trials,” Jul. 2018. [Online]. Available: https://arxiv.org/pdf/1807.02303

2. C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine learning. Cambridge Mass.: MIT Press, 2006.

3. G. de Ath, J. E. Fieldsend, and R. M. Everson, “What do you mean?,” 2020. [Online]. Available: https://arxiv.org/pdf/2004.08349

4. A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can adapt like animals,” 7553, Jul. 2014. [Online]. Available: https://arxiv.org/pdf/1407.3501

5. Aaron Wilson, Alan Fern, and Prasad Tadepalli, “Using Trajectory Data to Improve Bayesian Optimization for Reinforcement Learning,” Journal of Machine Learning Research, vol. 15, no. 8, pp. 253–282, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3