A New Reflected Target Optical Assessment System

Author:

Kesseli DevonORCID,Keshiro Mojolaoluwa,Mitchell Rebecca,Zhu Guangdong

Abstract

NREL has completed stage 1 development of an indoor optical measurement tool for fully assembled heliostats and single facets. This tool began as an indoor version of NREL’s outdoor Non-Intrusive Optical (NIO) measurement technique [1]. It uses similar techniques to other available tools (deflectometry, photogrammetry, etc.), but is designed to require very little infrastructure, labor, and time to set up and collect surface slope and canting measurements, making it a valuable tool for quality assurance and laboratory measurement of heliostat optics. It accomplishes this by using computer vision, photogrammetry, and multiple images stitched together to minimize the printed target size and required setup precision. This adaptable setup is useful for taking measurements at a variety of heliostat pointing angles, and for measuring fully assembled heliostats on the assembly line. In this paper, we describe the methodology behind the measurement system, present an initial analysis of its uncertainty and sensitivity, and compare it with established optical measurement systems.

Funder

U.S. Department of Energy

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3