Design Optimization of a Horizontal Particle Receiver for a Modular Beam Down Receiver CSP

Author:

Saldivia DavidORCID,Bruce AnnaORCID,Taylor Robert A.ORCID

Abstract

CSP research is focused on increasing the economic competitiveness of this technology as compared to conventional and emerging energy generators. Higher temperature operation conditions represent a pathway toward cost reductions since they enable a relatively smaller solar field area (typically ~40-50% of the plant cost) for the same electrical output. For example, supercritical CO2 power cycles with solid particles as the HTF could enable >600°C operations and a ~50% power bloc cycle efficiency (considerably higher than steam cycles, <40%). Additionally, small modular systems could increase competitiveness through reduced financial risk, increased system flexibility, and the value of additional services that a modular CSP could offer to the electricity grid (frequency control, peaking supply, etc.). This study investigates the Beam Down Receiver (BDR) configuration as a design that could be well-suited to meet these goals while also overcoming some of issues with particle receivers, such as particle attrition, advective losses, and operation control. In particular, this work introduces a novel horizontal particle receiver (HPR) and analyzes the main design parameters, including tower height, BDR size, radiation flux on the receiver, and receiver nominal power. The analysis shows that tower heights between 35m to 60m are ideal for high temperature receiver capacities of 8-15 MWth, and that this configuration can achieve a minimized LCOH of ~24 USD/MWth. These results suggest that BDRs combined with particle mediums could represent a viable high temperature, high efficiency CSP alternative.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3