Modeling Cellular Network Infrastructure in SUMO

Author:

Hegde Anupama,Stahl Ringo,Lobo Silas,Festag Andreas

Abstract

Communication networks are becoming an increasingly important part of the mobility system. They allow traffic participants to be connected and to exchange information related to traffic and roads. The information exchange impacts the behavior of traffic participants, such as the selection of travel routes or their mobility dynamics. Considering infrastructure-based networks, the information exchange depends on the availability of the network infrastructure and the quality of the communication links. Specifically in urban areas, today’s 4G and 5G networks deploy small cells of high capacity, which do not provide ubiquitous cellular coverage due to their small range, signal blocking, etc. Therefore, the accurate modeling of the network infrastructure and its integration in simulation scenarios in microscopic traffic simulation software is gaining relevance. Unlike traffic infrastructure, such as traffic lights, the simulation of a cellular network infrastructure is not natively supported in SUMO. Instead, the protocols, functions and entities of the communication system with the physical wireless transmission are modeled in a dedicated and specialized network simulator that is coupled with SUMO. The disadvantage of this approach is that the simulated SUMO entities, typically vehicles, are not aware which portions of the roads are covered by wireless cells and what quality the wireless communication links have. In this paper, we propose a method for modeling the cellular infrastructure in SUMO that introduces a cellular coverage layer to SUMO. This layer models cell sites in a regular hexagonal grid, where each site is served by a base station. Following commonly accepted guidelines for the evaluation of cellular communication system, the method facilitates standardized and realistic modeling of the cellular coverage, including cell sites, antenna characteristics, cell association and handover. In order to ease the applicability of the method, we describe the work flow to create cell sites. As a representative case, we have applied the method to InTAS, the SUMO Ingolstadt traffic scenario and applied real data for the cellular infrastructure. We validate the approach by simulating a Cellular V2X system with sidelink connectivity in an urban macro cell environment by coupling SUMO enhanced by the proposed connectivity sublayer with ARTERY-C, a network simulator for Cellular V2X. As a proof-of-concept, we present a signal-to-interference noise ratio (SINR) coverage map and further evaluate the impact of different types of interference. We also demonstrate the effect of advanced features of cellular networks such as inter-cell interference coordination (ICIC) and sidelink communication modes of Cellular V2X with dynamic switching between the in-coverage and out-of-coverage mode.

Publisher

TIB Open Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3