Automated Documentation of Research Processes Using RDM

Author:

Griem Lars Christoph,Thelen Richard,Selzer Michael

Abstract

Published research results usually represent only a fraction of the data generated at a research institute. The unpublished data created in the process of producing the final result, however, often contain valuable information that can be reused. Through research data management, all these data should be stored centrally according to the FAIR principles (Findable, Accessible, Interoperable, Reusable). However, a significant part of knowledge is often not found in the data, but in the processes that led to their generation. It is therefore important to map these processes to archive and document this knowledge in a structured way. Procedures for documenting scientific processes already exist and are actively used at research institutes. However, these are often analogue or paper-based and hence do not meet the requirements for FAIR data management. At the Institute for Microstructure Technology of the KIT, such a paper-based procedure is used to document the production of microstructure components. During their manufacturing, it is essential to adhere to the correct process parameters in order to enable error-free production. Therefore, a so-called job ticket always accompanies the production of components. On this job ticket, the correct process sequence is listed and a detailed description of the respective process step is given. Depending on the component to be produced, a distinction is made between different types of job tickets according to internal conventions. On the one hand, there are so-called green job tickets, which describe a standardised process sequence, and on the other hand, blue job tickets, which are intended to document experimental manufacturing processes. The process sequence on the blue job tickets is initially empty and is filled in during the manufacturing process. Common to both types of job tickets is that they are stored in the institute's archive after completion of the component production. However, since the job tickets are paper-based, the corresponding archive of job tickets cannot be searched quickly and, given the sheer volume of archived job tickets, represents an unmanageable collection of data. The existing system for process documentation is therefore to be implemented with the help of the research data infrastructure Kadi4Mat [1] in accordance with FAIR principles, thereby making the available process knowledge more accessible.

Funder

Helmholtz-Gemeinschaft

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3