Abstract
Using the thermal building mass as a thermal storage received increasing attention in research during recent years. Due to the large mass of concrete, it offers a large storage capacity and thus a high potential for flexibility. However, passive heat losses during cool down of a thermally activated building influence room temperature and thus limit its flexibility potential. In this contribution a multi-layer activation concept was investigated which thermally decouples the building mass and room air. The study aims to analyse the cool down of a thermally activated building in terms of different charging parameters while considering other heat sources such as solar gains. A dynamic building simulation of a demonstration building was set-up and compared to simulative studies from literature to proof the validity of its dynamic behaviour. In the simulation model the room temperature could be kept above 19 °C between 100 - 190 h. However, when charging the building structure quickly, room temperatures above 24 °C are reached easily. Considering other heat sources such as solar gains, advanced control algorithms are required for efficient operation of the heating system.
Funder
Bundesministerium für Wirtschaft und Klimaschutz
Reference10 articles.
1. European Commission, „What is the European Green Deal“, 2019.
2. I. Vigna, R. Pernetti, W. Pasut und R. Lollin, „Literature review on energy flexibility definitions and indicators for building clusters“, 2018.
3. A. Thür, T. Calabrese und W. Streicher, „Smart grid and PV driven ground heat pump as thermal battery in small buildings for optimized electricity consumption“, Solar Energy, Jg. 174, S. 273–285, 2018, doi: https://doi.org/10.1016/j.solener.2018.08.087.
4. A. Thür, B. Schett und F. Leu, „PV driven Air Heat Pump using Overheating Effects as Thermal Battery in Single Family Houses“ in EuroSun 2022 Proceedings, International Solar Energie Society, Hg., 2022, doi: https://doi.org/10.18086/eurosun.2022.08.12.
5. D. Olsthoorn, F. Haghighat, A. Moreau und G. Lacroix, „Abilities and limitations of thermal mass activation for thermal comfort, peak shifting and shaving: A review“, Building and Environment, Jg. 118, S. 113–127, 2017, doi: https://doi.org/10.1016/j.buildenv.2017.03.029.