Energetic Potential of Parallel Operation of Two Heat Sources in a Dual-Source Heat Pump

Author:

Reum TobiasORCID,Schmitt DavidORCID,Summ ThorstenORCID,Schrag Tobias

Abstract

Dual-source heat pumps can mitigate disadvantages of single source heat pumps: They have fewer geological requirements compared to ground-source heat pumps while having higher efficiencies compared to air-source heat pumps. Parallel operation of two heat sources can also make electric heaters for peak loads obsolete, leading to economic benefits in the operational costs. Parallel operation has not been analysed thoroughly at different evaporation temperature gradients. To address this gap in research, four possible interconnections of two heat sources were analysed using a refrigerant cycle simulation, two with similar and two with separate evaporation pressures. The energetic potential of each interconnection is evaluated and compared to single source operation with an air-source and a ground-source heat pump. The results showed that only the interconnections with separate evaporation pressure allowed significant reduction in evaporation power from the ground source. As expected, the efficiency – compared to single air-source operation – increased for all parallel interconnections but decreased compared to ground-source operation. Efficient peak load coverage with small ground-source collectors therefore requires a more complex interconnection of completely split evaporator branches at different evaporation pressures. While the efficiency and heating power compared to single ground-source operation decreased slightly (by 4% and 6%, respectively), the power load on the GSHX and ASHX reduced to about 54% and 66% compared to the corresponding single-source operation, respectively. This allows high efficiency at reduced GSHX size and ASHX noise emission. Additionally, this interconnection also allows increased flexibility for improved heat source management.

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3