Evaluation of Deep Learning Instance Segmentation Models for Pig Precision Livestock Farming

Author:

Witte Jan-Hendrik,Gerberding Johann,Melching Christian,Marx Gómez Jorge

Abstract

In this paper, the deep learning instance segmentation architectures DetectoRS, SOLOv2, DETR and Mask R-CNN were applied to data from the field of Pig Precision Livestock Farming to investigate whether these models can address the specific challenges of this domain. For this purpose, we created a custom dataset consisting of 731 images with high heterogeneity and high-quality segmentation masks. For evaluation, the standard metric for benchmarking instance segmentation models in computer vision, the mean average precision, was used. The results show that all tested models can be applied to the considered domain in terms of prediction accuracy. With a mAP of 0.848, DetectoRS achieves the best results on the test set, but is also the largest model with the greatest hardware requirements. It turns out that increasing model complexity and size does not have a large impact on prediction accuracy for instance segmentation of pigs. DETR, SOLOv2, and Mask R-CNN achieve similar results to DetectoRS with a parameter count almost three times smaller. Visual evaluation of predictions shows quality differences in terms of accuracy of segmentation masks. DetectoRS generates the best masks overall, while DETR has advantages in correctly segmenting the tail region. However, it can be observed that each of the tested models has problems in assigning segmentation masks correctly once a pig is overlapped. The results demonstrate the potential of deep learning instance segmentation models in Pig Precision Livestock Farming and lay the foundation for future research in this area.

Publisher

TIB Open Publishing

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3