Surface Examination of Structure Loss in N-Type Czochralski Silicon Ingots

Author:

Hendawi RaniaORCID,Stokkan Gaute,Øvrelid Eivind,Di Sabatino MarisaORCID

Abstract

In principle, growing a dislocation-free Czochralski silicon ingot is possible if the growth process is kept stable and below the critical resolved shear stress value. However, in practice, a considerable proportion of the Si ingots are remelted due to the generation of dislocations or the so-called structure loss. The assessment of the failed ingots is a crucial step toward higher yield. However, the characterization of Si ingots is challenging due to their high brittleness and the high concentration of dislocations related to slip. In this work, we develop a non-destructive method to investigate the ingots that have experienced structure loss and reveal the root causes of this failure. Many characteristic features have been found on the surface of Czochralski silicon ingots. Based on these features, the ingots are classified into seven major groups that could be related to the main causes of the structure loss. Furthermore, the temperature gradient of several ingots is revealed by careful measurements of the growth ridges’ widths of these ingots. The results show that most of the failed ingots experience low-temperature gradients before the dislocation generation which agrees with the previous results. Three ingots have a clear particle hit on the surface, which caused an immediate transition to a multi-crystalline silicon structure. Particles are found on atomically smooth and rough interfaces, growth ridges, and surfaces in between. The surface examination method is a promising, fast, low-cost, and non-destructive technique that can be used to identify the most critical factors of structure loss in industrial ingots.

Publisher

TIB Open Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3