Investigation of Contact Resistivities on APCVD (p) Poly-Si for Fired Passivating Contacts

Author:

Okker TobiasORCID,Glatthaar Raphael,Huster Frank,Hahn GisoORCID,Cela Greven Beatriz,Seren Sven,Terheiden Barbara

Abstract

We investigate the properties of boron doped polycrystalline Si (poly-Si) deposited by atmospheric pressure chemical vapor deposition (APCVD) applied to fired passivating contacts (FPC), where no high temperature annealing takes place apart from the contact firing step. X-ray diffraction measurements show that the APCVD poly-Si is already partially crystallized directly after deposition and the crystallite size further increases during firing. Without metallization an implied open circuit voltage of up to 719 mV is achieved. Screen-printing with an Ag paste yields minimal contact resistivities of down to 1 mΩcm² at high firing temperatures. Furthermore, thicker poly-Si layers, accomplished by driving the same wafer multiple times through the APCVD system, generally correspond to lower contact resistivities for the FPC. This can partly be explained by an increasing crystallinity and conductivity during deposition due to the higher thermal budget during deposition for thicker layers as well as by a larger contact area for thicker poly-Si layers. Scanning electron microscopy on sample cross-sections show that almost the entire poly-Si layer is covered with Ag crystallites at high firing temperatures. For lower temperatures a lower density of Ag crystallites in the poly-Si is visible. Both findings hold for planar and textured surfaces.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

TIB Open Publishing

Reference11 articles.

1. F. Haase, C. Hollemann, S. Schäfer, A. Merkle, M. Rienäcker, J. Krügener, R. Brendel, R. Peibst, “Laser contact openings for local poly-Si-metal contacts enabling 26.1%-efficient POLO-IBC solar cells,” Solar Energy Materials and Solar Cells, vol.186, pp. 184–193, 2018, doi: https://doi.org/10.1016/J.SOLMAT.2018.06.020.

2. T. G. Allen, J. Bullock, X. Yang, A. Javey, S. D. Wolf, “Passivating contacts for crystalline silicon solar cells,” Nature Energy, vol.4, pp. 914–928, Sep., 2019, doi: https://doi.org/10.1038/s41560-019-0463-6.

3. A. Ingenito, S. Libraro, P. Wyss, C. Allebé, M. Despeisse, S. Nicolay, F.-J. Haug, C. Ballif, “Implementation and understanding of p⁺ fired rear hole selective tunnel oxide passivating contacts enabling greater conversion efficiency in p-type c-Si solar cells,” Solar Energy Materials and Solar Cells, vol.219, p. 110809, Jan., 2021, doi: https://doi.org/10.1016/j.solmat.2020.110809.

4. M. Lehmann, N. Valle, J. Horzel, A. Pshenova, P. Wyss, M. Döbeli, M. Despeisse, S. Eswara, T. Wirtz, Q. Jeangros, A. Hessler-Wyser, F.-J. Haug, A. Ingenito, C. Ballif, “Analysis of hydrogen distribution and migration in fired passivating contacts (FPC),” Solar Energy Materials and Solar Cells, vol.200, p. 110018, Sep., 2019, doi: https://doi.org/10.1016/j.solmat.2019.110018.

5. A. Merkle, S. Seren, H. Knauss, B. Min, J. Steffens, B. Terheiden, R. Brendel, R. Peibst, “Atmospheric pressure chemical vapor deposition of in-situ doped amorphous silicon layers for passivating contacts,” in Proc. 35th EUPVSEC, 2018, pp. 785-791.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3