Characterization of Mechanical Strength of Shingle Joints Using Die Shear Tests

Author:

Abdel Latif NajwaORCID,Lamsairhri Rachid,Rößler TorstenORCID

Abstract

For shingle interconnection there is no standard method to characterize the mechanical strength of the shingled joints. Therefore, we studied a die shear test for this purpose. In the first part, a single epoxy-based electrically conductive adhesive (ECA) was used in an industrial shingle stringer to produce shingle strings with different ECA printing widths and curing temperatures. It was observed that the printed ECA area increases at higher curing temperatures due to the increased formation of voids. Shear strength increased with elevating the curing temperature. In the second part of the study, three ECAs with varying glass transition temperature (Tg) were analysed with dynamic mechanical analysis (DMA). The shear strength of the ECAs correlates with the flexibility of the materials. ECA A, with the highest Tg, had the highest shear strength with an average of (25 ± 3) MPa, and ECA B with an average of (24 ± 9) MPa while ECA C had the lowest shear strength with an average of (15 ± 9) MPa. After characterising the shingled full-format PV modules produced using the three ECAs with electroluminescence and I–V measurements, it was found that the flexibility of the ECAs and the shear strength of the shingled joints had a very small effect on the module performance after thermal cycling 200 and mechanical load 5400 Pa. The ECAs with higher Tg showed more cell fracture but with negligible power loss. The ECA with the lowest Tg led to subtle joint degradation during the tests.

Funder

Bundesministerium für Wirtschaft und Klimaschutz

Publisher

TIB Open Publishing

Reference18 articles.

1. Puzant Baliozian, Nils Klasen, Nico Wöhrle, Christoph Kutter, and Ralf Preu, PERC-based shingled solar cells and modules at Fraunhofer ISE - Photovoltaics International Vol 43 (43), 2019. [Online]. Available: https://www.researchgate.net/publication/335992713_PERC-based_shingled_solar_cells_and_modules_at_Fraunhofer_ISE_-_Photovoltaics_International_Vol_43. Accessed: Nov. 14, 2022.

2. 2nd International Conference on Emerging Smart Materials in Applied Chemistry. (ESMAC-2021): ESMAC-2021. AIP Publishing, 2023. Accessed: Nov. 14, 2022.

3. H. Wirth, M. Heinrich, M. Mittag, E. Fokuhl, N. Klasen, and A. Mondon, “Comparison of Layouts for Shingled Bifacial PV Modules in Terms of Power Output, Cell-to-Module Ratio and Bifaciality,” 2018. [Online]. Available: https://www.semanticscholar.org/paper/Comparison-of-Layouts-for-Shingled-Bifacial-PV-in-Wirth-Heinrich/69c813cc143e36c415c241d28f5987c305fb2023. Accessed: Nov. 14, 2022. doi: https://doi.org/10.4229/35THEUPVSEC20182018-5BO.9.3.

4. G. Beaucarne, “Materials Challenge for Shingled Cells Interconnection,” Energy Procedia, vol. 98, pp. 115–124, 2016. doi: https://doi.org/10.1016/j.egypro.2016.10.087. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1876610216310487. Accessed: Nov. 14, 2022.

5. N. Klasen, A. Mondon, A. Kraft, and U. Eitner, Shingled Cell Interconnection: A New Generation of Bifacial PV-Modules, 2018. doi: https://doi.org/10.2139/ssrn.3152478. [Online]. Available: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3152478. Accessed: Nov. 14, 2022.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3