Comparing Measured Driver Behavior Distributions to Results from Car-Following Models using SUMO and Real-World Vehicle Trajectories from Radar

Author:

Schrader MaxORCID,Al Abdraboh MahdiORCID,Bittle JoshuaORCID

Abstract

In this study, the physical principles governing car-following (CF) behavior and their impact on traffic flow at signalized intersections are investigated. High temporal-resolution radar data is used to provide valuable insights into actual CF behavior, including acceleration, deceleration, and time headway distribution. Demand-calibrated SUMO simulations are run using empirical CF parameter distributions, and three CF models are evaluated: IDM, EIDM, and Krauss. By emulating radar data in SUMO and processing simulated vehicle traces, discrepancies between empirical and simulated parameter distributions are identified. Further analysis includes comparisons with default SUMO CF model parameters. The findings reveal that measured accelerations differ from CF model parameter accelerations and using the empirical value ($\mu = 0.89m/s^2$) leads to unrealistic simulations that fail volume-based calibration. Default parameters for all three models reasonably approximate the mean and median of measured parameters, but fail to capture the true distribution shape, partly due to homogeneity when using default parameters. The results show that it is more effective to simulate with the default parameters provided by SUMO rather than using measurements of real-world distributions without additional calibration. Future work will investigate closing the loop between the measured real-world and SUMO distributions using traditional calibration tactics, as well as assess the impact of calibrated vs. default CF parameters on simulation outputs like fuel consumption.

Funder

Office of Energy Efficiency and Renewable Energy

Publisher

TIB Open Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3