Challenges in the Planning, Construction and Farming Practices in Agrivoltaic Systems With Vertically Mounted Panels

Author:

Wild Karl,Schueller John

Abstract

Several challenges in planning, construction, and farming practices hinder the optimization of agrivoltaic systems (AS) and the achievement of optimal crop production. This paper identifies and addresses these issues while presenting initial solutions. One specific type of AS involves vertically mounted panels on arable or grassland sites. The installation of panel rows divides large fields into narrow units, restricting the use of farming implements with different working widths. Implement widths must align with the spacing between panel rows, which often results in residual strips or overlapping issues when field operations are carried out. Furthermore, boundary effects in AS are more pronounced, impacting yield along field borders. The presence of panel rows also complicates driving operations, requiring reduced speeds and posing collision risks between implements and panels. Soil compaction during AS construction, microclimate variations, and panel contamination by dust, or spray drift deposits further affect plant growth and solar system performance. Initial solutions are proposed to address these challenges. These include careful planning of row spacing based on the working widths of critical implements such as combines, adoption of field sprayers with foldable booms, consideration of pneumatic fertilizer spreaders, and integration of precision farming techniques to manage variability within AS. Additionally, the use of construction machinery with low soil pressure, employment of steering technologies based on global navigation satellite systems, and research on panel cleaning devices are suggested. Overall, this paper highlights the need for further research and development to overcome farming challenges in agrivoltaic systems with vertically mounted panels.

Publisher

TIB Open Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3