Affiliation:
1. Maria Curie-Skłodowska University
2. Geological Institute KSC RAS
Abstract
The sulfur isotope geochemistry of the Khibina and Lovozero agpaitic massifs provides an opportunity to understand the role of plume-lithosphere interaction processes responsible for the Paleozoic alkaline igneous activity in the north-eastern part of the Fennoscandian Shield. The stable sulfur isotope δS analysis using triple collector isotope ratio mass spectrometer (IRMS) has been carried out on the pentlandite, chalcopyrite and pyrite from nepheline syenites. The δS values for pentlandite from Khibina rocks range from +0.69 to +2.06 ‰ relative to the Vienna Canyon Diablo Troillite standard (VCDT), and the pyrite has significantly higher δS values up to +4.92 ‰ VCDT. The pentlandite from the Lovozero samples has value +1.48 ‰ VCDT, δS values of chalcopyrite is +2.85 ‰ VCDT. The maximum positive δS values are obtained for Lovozero pyrite, which vary from +5.41 to +6.30 ‰ VCDT. Comparison of sulfur-geochemical features of Khibina and Lovozero nepheline syenite with δS data for the carbonatites from the Khibina, Sallanlatvi, Seblyavr, Vuoriyarvi, Salmagora and Kovdor massifs show later carbonatite formation relatively to associated alkaline rocks. Geochemical sulfur isotope δS investigations emphasizes that parental magmas of the Khibina and Lovozero alkaline massifs were derived from a metasomatized subcontinental lithospheric mantle (SCLM). We suggest that high-δS signature on the SCLM (δS of +1 to +6 ‰ VCDT) can be explained by subduction of the high-δS Archaean crust.
Publisher
FSEI HPE Murmansk State Technical University
Reference20 articles.
1. Arzamastsev, A. A., Arzamastseva, L. V., Zaraiskii, G. P. 2011. Contact interaction of agpaitic magmas with basement gneisses: An example of the Khibina and Lovozero massifs. Petrology, 19, pp. 109-133. DOI: https://doi.org/10.1134/S0869591111020032.
2. Arzamastsev, A. A., Yakovenchuk, V. N., Pakhomovsky, Ya. A., Ivanyuk, G. Yu. 2008. The Khibina and Lovozero alkaline massifs: Geology and unique mineralization. Apatity, GI KSC RAS.
3. Babiel, R., Marks, M. A. W., Neumann, U., Markl, G. 2018. Sulfides in alkaline and peralkaline rocks: Textural appearance and compositional variations. Neues Jahrbuch für Mineralogie-Abhandlungen: Journal of Mineralogy and Geochemistry, 195(2), pp. 155-175. DOI: https://doi.org/10.1127/njma/2018/0095.
4. Bell, K., Zaitsev, A. N., Spratt, J., Frojdo, S. et al. 2015. Elemental, lead and sulfur isotopic compositions of galena from Kola carbonatites, Russia - implications for melt and mantle evolution. Mineralogical Magazine, 79(2), pp. 219-241. DOI: https://doi.org/10.1180/minmag.2015.079.2.01.
5. Cabral, R. A., Jackson, M. G., Rose-Koga, E. F., Koga, K. T. et al. 2013. Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature, 496, pp. 490-493. DOI: https://doi.org/10.1038/nature12020.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献