Study of technical parameters of magnetic starters and switches installed in workshop networks

Author:

Petrov A. R.1,Gracheva E. I.1ORCID,Valtchev S.2

Affiliation:

1. Kazan State Power Engineering University

2. University NOVA of Lisbon

Abstract

The study of technical parameters of low-voltage switching devices of Russian production – magnetic starters PML and switches RE19 has been carried out. The problem of evaluating energy efficiency of operation of magnetic starters and switches installed in in-plant power supply systems has been presented. The main destabilizing factors significantly affecting the technical characteristics of switching devices with voltage up to 1 kV have been given. Reliability of functioning of the investigated devices, first of all, depends on the degree of wear of switching contacts. The dependences of the heating temperature of the contact areas of switching devices on the loading coefficient have been studied. It has been revealed that with the increase of loading of devices in the range from 1,0 to 2,0Inom the temperature of contacts and contact areas is within the permissible limits in accordance with the requirements of GOST 403-73. The main factors influencing the resistance of contact connections – current flowing through the contacts, their dimensions and heating temperature – have been shown. According to the results of theoretical and experimental studies approximating functions of dependences of resistance of contacts and contact connections of switching devices on rated current have been developed and errors of the calculated method of contact resistance estimation have been determined. The developed dependencies can be used to determine the equivalent resistance of networks of in-plant power supply when estimating the level of power losses, which will increase the reliability of the results obtained.

Publisher

FSEI HPE Murmansk State Technical University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3