Biodiversity dynamics in primary mid-taiga spruce forests after total windthrow in the Vodlozersky National Park, Russia

Author:

Ananyev Vladimir A.ORCID, ,Pekkoev Alexey N.ORCID,Grabovik Svetlana I.ORCID,Moshnikov Sergey А.ORCID,Medvedeva Maria V.ORCID,Ruokolainen Anna V.ORCID,Kolesnikova Varvara M.ORCID,Grabeklis Victoria V.ORCID, , , , , , ,

Abstract

In windthrow-affected areas, the research of biota is of high relevance taking into account the lack of knowledge about the dynamics of their flora, soil properties, and tree stand regeneration. An important task is to study the mechanisms of the natural dynamics of plant communities after major disturbances in large boreal forests. This paper was aimed to investigate the effects of a total windthrow event on the dynamics of biodiversity in pristine mid-boreal spruce (Picea abies) forests. The study was carried out in the Vodlozersky National Park (Northwest Russia: Arkhangelsk Region and Republic of Karelia), situated in the northern and middle taiga subzones. A series of permanent sample plots was established in an area affected by massive windthrow in 2000. The windthrow consequences of the forest communities have been studied, starting from the year of the event (2000) at 2–5-year intervals. A soil survey has been conducted in 2016. Windthrown trees, situated in the sample plots, were counted by species and diameter classes. Natural regeneration was estimated in subplots with a division to height cohorts and vitality status. Geobotanical relevé sampling of the ground vegetation has been conducted in 1 × 1-m permanent plots. Aphyllophoroid fungi (Basidiomycota) were counted by fruit bodies. Main soil pits and partial pits were dug. The morphological description of soils was produced in both undisturbed and disturbed sites in the study area. Obtained data, covering 20 years of surveys of various components of the forest plant communities (tree stand, advance regeneration, ground vegetation, wood-destroying fungi, soils), were analysed. We found that 16–20 years after the windthrow event the species and age structure of the tree stand has been considerably changed due to the forest stand rejuvenation. Post-windthrow regeneration of coniferous species in the true-moss group of forests has been successfully going on. By the end of the second decade after the windthrow event, cowberry spruce forests contained 4300 individuals/0.01 km2 of viable spruce regeneration, including 1500 individuals/0.01 km2 belonging to the large size category of spruce trees. In the bilberry-Sphagnum-type forest, spruce regeneration amounted to 8700 individuals/0.01 km2, including 2200 individuals/0.01 km2 belonging to the large size category of spruce trees. This amount is sufficient to ensure the development of spruce-dominated communities in the future. Since the forest ecosystems were recovering after the windthrow, the biodiversity of changed, that was reflected in an increase in the species composition of the ground vegetation and fungal communities. Over the study period (2001–2021), surveys of the sample plots demonstrated 83 aphyllophoroid fungi species, including five species included in the Red Data Book of the Republic of Karelia, as well as 22 taxa, considered old-growth forest indicator- and specialist species. The number of wood-destroying fungi species was the highest in the period from the 12th to the 19th post-windthrow years. The changes in soil properties on windthrow-affected sites were more explicit in the upper horizons: soil acidity decreased; both potassium and carbon content increased; nitrogen distribution across horizons became more even. An increase in the carbon-nitrogen ratio was detected in the Е and BF horizons. The obtained data can be used for predicting the regeneration of pristine mid-boreal spruce forests affected by catastrophic disturbances.

Publisher

Fund for Support and Development of Protected Areas

Subject

Earth and Planetary Sciences (miscellaneous),Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3