RHEOLOGY AS A TOOL FOR TECHNOLOGICAL ADVANCEMENTS IN SELF-COMPACTING LIGHTWEIGHT CONCRETE MIXES

Author:

Ostryzniuk Maksym, ,Gedulyan Sergіi,Antoniuk Nadіia,Moskalova Khrystyna, , ,

Abstract

This paper outlines a methodology aimed at enhancing the technological performance of self-compacting concrete using lightweight expanded clay aggregate. One of the primary challenges encountered when employing concrete with lightweight aggregate involves displacing expanded clay grains within the solution's liquid phase to ensure necessary fluidity (workability) while upholding high stability (structural viscosity and segregation resistance). To achieve this objective, the rheological parameters of the self-compacting cement matrix have been regulated by deliberately adjusting the functional groups of additives and the microfine mineral filler, employing analytical methods from computer materials science. Through the analysis of rheometric results obtained from investigating various solution mixtures, the most suitable model that describes their rheological behaviour has been identified. The impact of finely dispersed fly ash excipient, a carboxylate superplasticiser, and a stabiliser additive on the rheological parameters of self-compacting lightweight concrete mixes has been established. The inclusion of these complex additives in the composition has enabled substantial alterations in the flow index across a wide range (0,030-0,798). This adaptability allows for the adjustment of the mortar mixture's rheological behaviour throughout a spectrum ranging from «abnormally viscous liquid» to «Newtonian liquid». This approach, examining the singular-factor dependencies' analysis on the coefficients of rheological behaviour models, aids in addressing the primary challenge encountered when using concrete with lightweight aggregate.

Publisher

Faculty of Civil Engineering and Architecture Osijek

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3