Electrochemical reduction of CO to liquid C2+ with high Faradaic efficiency of amorphous CuO hybrid material wrapped in carbon and silica

Author:

Yang Yue-Xia,He Zhen-Hong,Cao Hui-Hui,Sun Yong-Chang,Tian Yue,Liu Jiajie,Wang Weitao,Wang Huan,Yang Yang,Liu Zhao-Tie

Abstract

Carbon monoxide (CO) is well recognized as one of the key intermediates for carbon dioxide (CO2) electrolytic reduction to C2+ products, which has been a hot research field recently. Developing an efficient catalyst that focuses on achieving C-C coupling is highly important for the production of C2+ products. In the present work, we present a feasible approach via the combination of electrostatic assembly and the hydrothermal method of coupling silicon polyanions and copper salts to build an amorphous copper hybrid material wrapped in carbon-silica, denoted as CuO@C-SiO2-X (where X means preparation temperature), as an efficient electrocatalyst for carbon monoxide reduction mainly to liquid C2+ products. The CuO@C-SiO2-X catalyst demonstrated excellent electrocatalytic activity and selectivity, especially to C2+ liquid products with the highest Faradaic efficiency of 81.5%. Additionally, the catalyst showed good stability. The presence of carbon enhanced electronic conductivity, and the silica protected the amorphous CuO from aggregation into crystalline structures. The present work not only provides an efficient catalyst for CO electrocatalytic reduction to liquid C2+ chemicals but also offers a protocol for building Cu-based catalysts with high selectivity to C2+ products in CO reduction.

Publisher

Universe Scientific Publishing Pte. Ltd.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial for Clean Energy Science and Technology (Volume 2, Issue 2);Clean Energy Science and Technology;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3