Detection of Coronary Artery Using Novel Optimized Grid Search-based MLP
-
Published:2022-03-16
Issue:1
Volume:4
Page:276-287
-
ISSN:2618-1630
-
Container-title:Vol 4 Issue 1
-
language:en
-
Short-container-title:IJIST
Author:
Hussain Iftikhar1, Qayyum Huma1, Javed Raja Rizwan2, Hassan Farman1, Rahman Auliya Ur1
Affiliation:
1. University of Engineering and Technology Taxila, Punjab Pakistan 2. National Defense University, Islamabad
Abstract
In recent years, we have witnessed a rapid rise in the mortality rate of people of every age due to cardiac diseases. The diagnosis of heart disease has become a challenging task in present medical research, and it depends upon the history of patients. Rapid advancements in the field of deep learning. Therefore, it is a need to develop an automated system that assists medical experts in their decision-making process. In this work, we proposed a novel optimized grid search-based multi-layer perceptron method to effectively detect heart disease patients earlier and accurately. We evaluated the performance of our method on a dataset named Public Health dataset for heart diseases. More specifically, our method obtained an accuracy of 95.12%, precision of 95.32%, recall of 95.32%, and F1-score of 95.32%. We made a comparison of our method with existing methods to check superiority and robustness of our system to detect heart disease patients. Experimental results along with comprehensive comparison with other methods illustrate that our technique has superior performance and is robust to detect heart disease patients. From the results, we can conclude that our method is reliable to be used in hospitals for the early detection of heart disease patients.
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Reference40 articles.
1. R. Poplin, A. V. Varadarajan, K. Blumer, Y. Liu, M. V. McConnell, G. S. Corrado, L. Peng, and D. R. Webster, ‘‘Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning,’’ Nature Biomed. Eng., vol. 2, no. 3, pp. 158–164, Mar. 2018. 2. J. Kim, U. Kang, and Y. Lee, ‘‘Statistics and deep belief network-based cardiovascular risk prediction,’’ Healthcare Inform. Res., vol. 23, no. 3, pp. 169–175, 2017. 3. K. M. Z. Hasan, S. Datta, M. Z. Hasan, and N. Zahan, ‘‘Automated prediction of heart disease patients using sparse discriminant analysis,’’ in Proc. Int. Conf. Electr., Comput. Commun. Eng. (ECCE), Feb. 2019, pp. 1–6. 4. G. Altan, ‘‘Diagnosis of coronary artery disease using deep belief net- works,’’ Makalenizi Yükleyebilmek için Lütfen İngilizce Dilini Seçiniz!!! EJENS, vol. 2, no. 1, pp. 29–36, 2017. 5. R. Alizadehsani, M. Abdar, M. Roshanzamir, A. Khosravi, P. M. Kebria, F. Khozeimeh, S. Nahavandi, N. Sarrafzadegan, and U. R. Acharya, ‘‘Machine learning-based coronary artery disease diagnosis: A comprehensive review,’’ Comput. Biol. Med., vol. 111, Aug. 2019, Art. no. 103346.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|