A Qualified review of ML and DL algorithms for Bearing Fault Diagnosis

Author:

Bibi Asma1,Naz Bushra2,Talpur Shahnawaz2,Soomro Shahzad Hyder2,Bablani Yusrah3

Affiliation:

1. Department of Computer Systems Engineering, Mehran

2. University of Engineering and Technology, Jamshoro, Pakistan

3. Department of Mechanical Engineering Case western Reserve University, Cleveland, Ohio

Abstract

Moving machinery is the backbone of socio-economic development. The use of machines helps in increasing the production of everyday used items, and tools, that generate electricity and mechanical energy, and provides easy and fast transportation and help by saving human efforts, energy, and time. The mechanical industry is totally dependent on the bearing and it is considered bread and butter of the system. Bearing failure is about 40% of the total failures of induction motors which is why it is a crucial challenge to predict the failure and helps prevent future downtime events through maintenance schedules with the latest techniques and tools of. This paper presents a review of how DL techniques and algorithms outsmarted ML for bearing fault detection and diagnosis and summarizes the accuracy results generated by most common DL algorithms over classical ML algorithms. Additionally this paper reasons different criteria for which DL algorithms have been proved efficient for building productive model in the field of bearing fault detection. Furthermore, some of the most famous datasets by different universities have been discussed and accuracy results are provided by reviewing algorithms on the CWRU dataset by different researchers and comparison chart is listed in the results section.

Publisher

50Sea

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3