Arsenic (v) Adsorption by Using Synthesized Iron Oxide Nanoparticles (Fe2O3-NPs) and Aluminum Oxide Nanoparticles (Al2O3-NPs)

Author:

Turi Muhammad Tahir1,Wei Ma1,Hussain Ittehad2,Hussain Javid3

Affiliation:

1. Department of Chemistry & Chemical Engineering, Dalian University of Technology, Dalian 116023, PR China.

2. Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.

3. Department of Environmental Science, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan.

Abstract

Arsenic, is one of the most harmful elements to humans, health of chronic diseases, and continuously causing a threat to the world. Arsenic is found in combined form in rocks under the earth's surface and when it dissolves, it contaminates groundwater. In the current research study synthesized iron oxide nanoparticles (Fe2O3-NPs) and aluminum oxide nanoparticles (Al2O3-NPs) for the removal of arsenic (As) (˅) from an aqueous medium and characterized the synthesized material by different analytical techniques such as FT-IR spectroscopy and XRD spectroscopy. The results show successful synthesis of Fe2O3-NPs and Al2O3-NPs. Furthermore, the synthesized material was used as an adsorbent for extraction of as (V) from water. The effect of different parameters such as pH, temperature, contact time, and adsorbent dose on the adsorption process was investigated. The adsorption efficiency was determined by Fe2O3-NPs at about 20 mg/g and Al2O3-NPs at 19.5 mg/g. The quantitative removal of as (V) from industrial water required a minimum amount (0.2 g) of Fe2O3-NPs and Al2O3-NPs. various kinetic and isotherms were investigated in the current study. The result showed that the obtained data for Fe2O3-NPs was more fitted to Pseudo second order kinetic and Freundlich equation, while for Al2O3-NPs the data was more fitted to Pseudo second order kinetic and Elovich model equation, which confirms the interaction among as (V) and adsorbents. Thermodynamic parameters were also investigated which shows the process is spontaneous and endothermic. This model was used to estimate the site energy distribution for each adsorbent. Thermodynamic parameters were also investigated which shows the non-spontaneous and endothermic nature of the adsorbent. According to the results of the analysis of the approximate site energy distribution, adding Fe2O3 and Al2O3-NPs to arsenic decreased the area under the frequency distribution curve of the sorption site energies, which in turn decreased the number of sorption sites that were open to arsenic. This might be explained by the hydrophobic interaction between synthesized materials and arsenic being reduced due to the blocking of the Fe2O3 and Al2O3-NPs hydrophobic surface.

Publisher

50Sea

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3