Asphalt Pavement Potholes Localization and Segmentation using Deep RetinaNet and Conditional Random Fields

Author:

Rana Ghazanfar Ali1,Adnan Syed Muhammad1,Nida Nudrat2,Ahmad Wakeel1,Bilal Farooq1

Affiliation:

1. Department of Computer Science, University of Engineering & Technology Taxila, Pakistan

2. Air University, Islamabad, Aerospace & Aviation CampusKamra, Pakistan.

Abstract

The main aspect of maintaining the roads and highways' durability and long life is to detect potholes and restore them. A huge number of accidents occur on the roads and highways due to the pothole. It also causes financial loss to vehicle owners by damaging the wheel and flat tire. For the strategies of the road management system and ITS (Intelligent Transportation System) service, it is one of the major tasks to quickly and precisely detect the potholes. To solve this problem, we have proposed a deep learning methodology to automatically detect and segment the pothole region within the asphalt pavement images. The detection of the pothole is a challenging task because of the arbitrary shape and complex structure of the pothole. In our proposed methodology, to accurately detect the pothole region, we used RetinaNet that creates the bounding box around the multiple regions. For the segmentation we used Conditional Random Field that segments the detected pothole regions obtained from RetinaNet. There are three steps in our methodology, image preprocessing, Pothole region localization, and Pothole segmentation. Our proposed methodology results show that potholes in the images were correctly localized with the best accuracy of 93.04%. Conditional Random Fields (CRF) also show good results.

Publisher

50Sea

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3