Automatic Vehicle Number Plate Recognition Approach Using Color Detection Technique

Author:

Ayaz Muhammad1,Shah Dr. Said Khalid1,Javed Dr. Muhammad1,Assam Muhammad2,Khan Wasiat3,Najeeb Fahad1

Affiliation:

1. Department of Computer Science University of Science and Technology Bannu, Pakistan.

2. College of Computer Science and Technology Hangzhou 310027, China.

3. Department of Software Engineering, University of Science and Technology, Bannu, KP Pakistan

Abstract

An Automatic Vehicle Number Plate Recognition System (AVNPR) is a key research area in image processing. Various techniques are developed and tested by researchers to improve the detection and recognition rate of AVNPR system but faced problems due to issues such as variation in format, lighting conditions, scales, and colors of number plates in different countries or states or even provinces of a country. Douglas Peucker Algorithm for shape approximation has been used in this research to detect the rectangular contours and the most prominent rectangular contour is extracted as a number plate (NP) and the connected component analysis is used to segment the characters followed by optical character recognition (OCR) to recognize the number plate characters. A custom dataset of 210 vehicle images with different colors at various distances and lighting conditions was used for the proposed method captured on my smart phone Galaxy J7 Model SM-j700F at roads and parking. The dataset contains various types of vehicles (i.e. Trucks, motorcars, mini-buses, tractors, pick-ups etc). The proposed method shows an average result of 95.5%. The novelty used in this method is that it works for different colors simultaneously because in Pakistan, several colors are used for vehicle NPs.

Publisher

50Sea

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Model for Automatic Number/License Plate Detection and Recognition System in Campus Gates;2023 11th International Symposium on Digital Forensics and Security (ISDFS);2023-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3