Compact Frequency Selective Surface (FSS) for X-Band Shielding

Author:

Khalil Taiba1,Riaz Muhammad Ali1,Shahid Humayun1,Khan Muhammad Jamil1,Amin Yasar1

Affiliation:

1. Department of Telecommunication Engineering (University of Engineering and Technology Taxila).

Abstract

With the increase in the usage of electromagnetic devices, electromagnetic interference increased many folds. Frequency Selective Surface (FSS) provide effective shielding from unwanted frequency ranges. A thin, conformal band-stop FSS is presented in this research that provides effective electromagnetic shielding properties in X-band. The FSS acts as a band stop filter at 10 GHz. The proposed FSS has 54.7% fractional bandwidth. The design is of the dimensions 6.79 x 6.79 x 0.127 milimeter cube, employing Rogers RT 5880 substrate with 0.0009 dielectric constant. It has an attenuation of at least -57.97 dB. The proposed FSS shows oblique incidence angle independence for both TE and TM modes, up to 60o scan angle. The incidence angle independence makes the FSS response stable for both normal and varying angles of the incident waves. The design has a copper cladding of 0.018 mm, making the overall FSS thickness of 0.145 mm. The thin substrate makes the design flexible and easily bendable for curved surfaces. Its thin structure makes it easily applicable on buildings, vehicles and military aircrafts for electromagnetic shielding purposes. The conformability and shielding properties make the design suitable for various other applications.

Publisher

50Sea

Subject

Computer Networks and Communications,Hardware and Architecture,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Textile Based Tri-band FSS for 5G mmWave Shielding;2024 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET);2024-03-21

2. An ultra‐thin frequency‐selective surface with inductive loading for X‐band shielding applications;International Journal of Communication Systems;2023-12-17

3. A SINGLE-LAYER FSS FOR S-, C-, X-, KU- AND K-BAND APPLICATIONS;Materiali in tehnologije;2023-01-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3