Double Auction used Artificial Neural Network in Cloud Computing

Author:

Abbas Muhammad Adeel1,Iqbal Zeshan1

Affiliation:

1. Department of Computer Science University of Engineering and Technology Taxila, Pakistan

Abstract

Double auction (DA) algorithm is widely used for trading systems in cloud computing. Distinct buyers request different attributes for virtual machines. On the other hand, different sellers offer several types of virtual machines according to their correspondence bids. In DA, getting multiple equilibrium prices from distinct cloud providers is a difficult task, and one of the major problems is bidding prices for virtual machines, so we cannot make decisions with inconsistent data. To solve this problem, we need to find the best machine learning algorithm that anticipates the bid cost for virtual machines. Analyzing the performance of DA algorithm with machine learning algorithms is to predict the bidding price for both buyers and sellers. Therefore, we have implemented several machine learning algorithms and observed their performance on the bases of accuracy, such as linear regression (83%), decision tree regressor (77%), random forest (82%), gradient boosting (81%), and support vector regressor (90%). In the end, we observed that the Artificial Neural Network (ANN) provided an astonishing result. ANN has provided 97% accuracy in predicting bidding prices in DA compared to all other learning algorithms. It reduced the wastage of resources (VMs attributes) and soared both users' profits (buyers & sellers). Different types of models were analyzed on the bases of individual parameters such as accuracy. In the end, we found that ANN is effective and valuable for bidding prices for both users.

Publisher

50Sea

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3