Non-invasive EEG based Feature Extraction framework for Major Depressive Disorder analysis

Author:

Bashir Nayab1,Narejo Sanam2,Naz Bushra3,Jawed Mohammad Moazzam2,Talpur Shahnawaz2,Aliev Khurshid4

Affiliation:

1. Department of Biomedical Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.

2. Department of Computer Systems, Mehran University of Engineering and Technology, Jamshoro, Pakistan.

3. Department of Computer Systems, Mehran University of Engineering and Technology, Jamshoro, Pakistan

4. Department of Electronics and Telecommunication, Politecnico Di Torino, Italy

Abstract

Depression and several other behavioral health disorders are serious public health concerns worldwide. Persistent behavioral health issues have a wide range of consequences that affect people personally, culturally and socially. Major depressive disorder (MDD) is a psychiatric ailment that affects people of all ages worldwide. It has grown into a major global health issue as well as an economic burden. Clinicians are using several medications to limit the growth of this disease at an early stage in young people. The goal of this research is to improve the depression diagnosis by altering Electroencephalogram (EEG) signals and extracting the Differential Entropy (DE) and Power Spectral Density (PSD), using machine learning and deep learning techniques. This study analyzed the EEG signals of 30 healthy people and 34 people with Major Depressive Disorder (MDD). K-nearest neighbors (KNN) had the highest accuracy among machine learning algorithms of 99.7%, while Support vector machine (SVM) had acquired 95.7% accuracy. The developed Deep Learning approach, convolution neural network (CNN), achieved 99.6% accuracy. With these promising results, this study establishes the viability of an Electroencephalogram based diagnosis of MDD.

Publisher

50Sea

Subject

Computer Networks and Communications,Hardware and Architecture,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3