Heart Attack Risk Prediction with Duke Treadmill Score with Symptoms using Data Mining
-
Published:2021-12-29
Issue:4
Volume:3
Page:174-185
-
ISSN:2618-1630
-
Container-title:Vol 3 Issue 4
-
language:en
-
Short-container-title:IJIST
Author:
Anjum Muhammad Shoaib1, Mumtaz Dr. Shahzad2, Riaz Dr. Omer3, Sharif Waqas4
Affiliation:
1. Department Of Computer Science, The Islamia University Of Bahawalpur 2. Department of Data Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan 3. Department of Information Technology, The Islamia University of Bahawalpur 4. Department of Computer Science, The Islamia University of Bahawalpur, Bahawalpur
Abstract
The healthcare industry has a huge volume of patients’ health records but the discovery of hidden information using data mining techniques is missing. Data mining and its algorithm can help in this situation. This study aims to discover the hidden pattern from symptoms to detect early Stress Echocardiography before using Exercise Tolerance Test (ETT). During this study, raw ETT data of 776 patients are obtained from private heart clinic “The Heart Center Bahawalpur”, Bahawalpur, South Punjab, Pakistan. Duke treadmill score (DTS) is an output of ETT which classifies a patient’s heart is working normally or abnormally. In this work multiple machine learning algorithms like Support Vector Machine (SVM), Logistic Regression (LR), J.48, and Random Forest (RF) are used to classify patients’ hearts working normally or not using general information about a patient like a gender, age, body surface area (BSA), body mass index (BMI), blood pressure (BP) Systolic, BP Diastolic, etc. along with risk factors information like Diabetes Mellitus, Family History, Hypertension, Obesity, Old Age, Post-Menopausal, Smoker, Chest Pain and Shortness Of Breath (SOB). During this study, it is observed that the best accuracy of 85.16% is achieved using the Logistic Regression algorithm using the split percentage of 60-40.
Subject
Computer Networks and Communications,Hardware and Architecture,Software
Reference22 articles.
1. Günaydın, Z.Y., Bektaş, O., Gürel, Y.E., Karagöz, A., Kaya, A., Kırış, T., and Zeren, G.: ‘The value of the Duke treadmill score in predicting the presence and severity of coronary artery disease’, Kardiologia Polska (Polish Heart Journal), 2016, 74, (2), pp. 127-134 2. Bhatla, N., and Jyoti, K.: ‘An analysis of heart disease prediction using different data mining techniques’, International Journal of Engineering, 2012, 1, (8), pp. 1-4 3. Thomas, J., and Princy, R.T.: ‘Human heart disease prediction system using data mining techniques’, in Editor (Ed.)^(Eds.): ‘Book Human heart disease prediction system using data mining techniques’ (IEEE, 2016, edn.), pp. 1-5 4. Tougui, I., Jilbab, A., and El Mhamdi, J.: ‘Heart disease classification using data mining tools and machine learning techniques’, Health and Technology, 2020, 10, pp. 1137-1144 5. Kwok, J.M., Miller, T.D., Hodge, D.O., and Gibbons, R.J.: ‘Prognostic value of the Duke treadmill score in the elderly’, Journal of the American College of Cardiology, 2002, 39, (9), pp. 1475-1481
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|