Numerical Evaluation of Fuel Consumption and Transient Emissions of Different Hybrid Topologies for Two-Wheeler Application

Author:

Elango Pradeev,Mathivanan Arulkumaran,Kakani Raghav,Das Himadri B.,Asvathanarayanan Ramesh

Abstract

<div>In Asian countries, small two-wheelers form a major share of the automobile segment and contribute significantly to carbon dioxide (CO<sub>2</sub>) emissions. Hybrid drives, though not widely applied in two-wheelers, can reduce fuel consumption and CO<sub>2</sub> emissions. In this work three hybrid topologies, viz., P2 (electric motor placed between engine and transmission), P3 (electric motor placed between transmission and final drive), and power-split concepts (with planetary gear-train) have been modeled in Simulink, and their fuel consumption and emissions under the World Motorcycle Test Cycle (WMTC) have been evaluated. A physics-based model for the Continuously Variable Transmission (CVT) was used which is capable of predicting its transient characteristics. A map-based fuel consumption model and a Neural Network (NN)-based transient emission model were used for the engine. The NN-based transient emission model avoids the need to model the air path and fuel path in transient conditions, which is time consuming. The fueling characteristics of the Engine Control Unit (ECU) in transients need not be known if an NN model is built and tuned with sufficient experimental data. Several transient experiments were performed with speed-load profiles similar to the WMTC for tuning the NN emission models. Simulation results show that the P2 hybrid, P3 hybrid, and power-split drives have fuel economy benefits of about 27%, 37%, and 49%, respectively, compared to the conventional powertrain. However, nitrogen oxides (NOx) emissions are much higher for the hybrid powertrains due to the operation of the engine at higher load ranges for efficiency but are still within the prevailing BS6 Indian emission limits. A significant portion of the wheel energy input can be recovered through efficient regenerative braking in the WMTC. This will be even more significant under peak traffic city driving conditions. The belt losses in the CVT significantly reduce the potential benefits of the hybrid powertrain, and hence, an efficient transmission to replace it will be beneficial.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3