Comprehensive Component On-Board Diagnostics: Systematic Transformation Approach to Malfunctions

Author:

Soundara Rajan Ragupathi,Richert Felix,Pischinger Stefan

Abstract

<div>Exhaust emission standards for road vehicles require on-board diagnostics (OBD) of all comprehensive powertrain components (CCMs) impacting pollutant emissions. The legislation defines the generic malfunction criteria and pollutant threshold limits to trigger the component functional degradation. The electric drivetrain in xEV (more than one propulsion energy converter) applications substitutes or supports the internal combustion engine (ICE) operation with electric machine (EM) power. Malfunctions in the electric drivetrain will lead to an increase in ICE power demand. Hence, the electric drive system is classified as a comprehensive component in the OBD legislation. The regulation defines monitoring of the EM performance. The malfunctions that could prevent the EM(s) from properly operating emission control strategies, including any ICE control activation or electric drivetrain performance degradation, should be monitored by the OBD system. This work demonstrates an approach to systematically transform generic OBD legislation requirements into granular component malfunctions based on a simulation approach in the early development phase for an electric drivetrain. In the first step, the generic legislation requirements of properly functioning emission control strategies and performance degradation are transformed into electric drivetrain system element functional attributes. The malfunctions from different sources were collected as a potential malfunctions list including malfunction characterization. The impact on electric drivetrain system element functional attributes is determined for each of the malfunctions based on their characterization. Then, the matching set of malfunctions between the potential list and the OBD-derived system element functional impacts resulted in an optimized malfunction list. These optimized malfunctions are evaluated for their exhaust emission impact on a map-based one-dimensional vehicle longitudinal simulation model. The faults are also modeled to simulate their impact on ICE operation and their exhaust emissions when driven in the Worldwide harmonized Light-duty vehicles Test Cycle (WLTC). There are electric drivetrain faults that significantly increase the exhaust emissions of carbon monoxide (CO), non-methane hydrocarbons (NMHC), and oxides of nitrogen (NO<sub>x</sub>). Hence, it is important to note that even if the ICE is faultless, increased pollutant emissions can occur due to electric drivetrain malfunctions in an xEV vehicle.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3