Development of Data-Driven Models for the Prediction of Fuel Effects on Diesel Engine Performance and Emissions

Author:

Schaberg Paul,Harms Thomas

Abstract

<div>A modelling tool has been developed for the prediction of fuel effects on the performance and exhaust emissions of a heavy-duty diesel engine. Recurrent neural network models with duty-cycle, engine control, and fuel property parameters as inputs were trained with transient test data from a 15-liter heavy-duty diesel engine equipped with a common-rail fuel injection system and a variable geometry turbocharger.</div> <div>The test fuels were formulated by blending market diesel fuels, refinery components, and biodiesel to provide variations in preselected fuel properties, namely, hydrogen-to-carbon (H/C) ratio, oxygen-to-carbon (O/C) ratio, derived cetane number (CN), viscosity, and mid- and end-point distillation parameters. Care was taken to ensure that the correlation between these fuel properties in the test fuel matrix was minimized to avoid confounding model input variables.</div> <div>The test engine was exercised over a wide variety of transient test cycles during which fuel rail pressure, injection timing, airflow, and recirculated exhaust gas flow were systematically varied. The resulting models could predict the transient engine torque and fuel consumption, and nitrogen oxide (NOx), soot, carbon monoxide (CO), total hydrocarbon (THC), and carbon dioxide (CO<sub>2</sub>) exhaust emissions with good accuracy, indicating that the limited number of fuel property parameters selected as model inputs was sufficient to capture the fuel-related effects.</div> <div>The modelling tool can also be used to estimate the relative contributions from changes in the individual fuel inputs to changes in exhaust emissions, and this is illustrated by means of an example blending study with crude-derived diesel fuel, biodiesel, and paraffinic gas-to-liquid (GTL) diesel fuel. This type of novel numerical analysis provides insights into fuel effects which are very difficult to achieve experimentally due to the high degree of intercorrelation between fuel properties that is usually present.</div>

Publisher

SAE International

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3