Automated Expert Knowledge-Based Deep Reinforcement Learning Warm Start via Decision Tree for Hybrid Electric Vehicle Energy Management

Author:

Wang Hanchen1,Arjmandzadeh Ziba1,Ye Yiming2,Zhang Jiangfeng2,Xu Bin3

Affiliation:

1. The University of Oklahoma, USA

2. Clemson University, USA

3. The University of Oklahoma, Aerospace and Mechanical Engineering, USA

Abstract

<div>Deep reinforcement learning has been utilized in different areas with significant progress, such as robotics, games, and autonomous vehicles. However, the optimal result from deep reinforcement learning is based on multiple sufficient training processes, which are time-consuming and hard to be applied in real-time vehicle energy management. This study aims to use expert knowledge to warm start the deep reinforcement learning for the energy management of a hybrid electric vehicle, thus reducing the learning time. In this study, expert domain knowledge is directly encoded to a set of rules, which can be represented by a decision tree. The agent can quickly start learning effective policies after initialization by directly transferring the logical rules from the decision tree into neural network weights and biases. The results show that the expert knowledge-based warm start agent has a higher initial learning reward in the training process than the cold start. With more expert knowledge, the warm start shows improved performance in the initial learning stage compared to the warm start method with less expert knowledge. The results indicate that the proposed warm start method requires 76.7% less time to achieve convergence than the cold start. The proposed warm start method is also compared with the conventional rule-based method and equivalent consumption minimization strategy. The proposed warm start method reduces energy consumption by 8.62% and 3.62% compared with the two baseline methods, respectively. The results of this work can facilitate the expert knowledge-based deep reinforcement learning warm start in hybrid electric vehicle energy management problems.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3