Multi-Objective Optimization of Vehicle-Following Control for Connected Electric Vehicles Based on Deep Deterministic Policy Gradient

Author:

Zhang Yulin1,Wu Yue2,He Wei3,Gao Yang2,Peng Hui4,Li Heng4

Affiliation:

1. Central South University, School of Computer Science and Engineering, China

2. Central South University, School of Automation, China

3. Central South University, School of Traffic and Transportation Engineering, China

4. Central South University, School of Computer Science and Engineering, China

Abstract

<div>Eco-driving plays an increasingly important role in intelligent transportation systems, where the vehicle-following economy and safety are receiving increasing attention in recent years. In this context, this article proposes a novel deep deterministic policy gradient (DDPG)-based driving control strategy for connected electric vehicles (CEVs) under vehicle-following scenarios. Three original contributions make this article distinctive from existing studies. First, a multi-objective optimization problem including driving safety, passenger comfort, and the driving economy for the following vehicle is established, in which the battery capacity degradation cost is first considered in the vehicle-following problem. Second, a DDPG-based driving control strategy is proposed where a penalty is introduced into the multi-objective optimization reward function to accelerate the convergence process. Third, the coupling relationship of the three objectives is carefully studied. Different weighting factors are tested and analyzed to balance the three objectives. Detailed discussion and comparison under different driving cycles validate the superiority of the proposed method, e.g., a 16–31% reduction of battery capacity degradation cost with better safety and comfort, compared with existing vehicle-following strategies. This work makes a potential contribution to the artificial intelligence application of intelligent transportation systems.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3