Battery Thermal Runaway Preventive Time Delay Strategy Using Different Melting Point Phase Change Materials

Author:

Talele Virendra1,Patil Mahesh Suresh2,Moralı Uğur3,Panchal Satyam4,Fraser Roydon4,Fowler Michael5,Thorat Pranav1

Affiliation:

1. MIT ADT University, Department of Mechanical Engineering, MIT School of Engineering, India

2. Electromobility, Volvo Group, Sweden

3. Eskisehir Osmangazi University, Department of Chemical Engineering, Turkey

4. University of Waterloo, Department of Mechanical and Mechatronics Engineering, Canada

5. University of Waterloo, Department of Chemical Engineering, Canada

Abstract

<div>The production of alternative clean energy vehicles provides a sustainable solution for the transportation industry. An effective battery cooling system is required for the safe operation of electric vehicles throughout their lifetime. However, in the pursuit of this technological change, issues of battery overheating leading to thermal runaways (TRs) are seen as major concerns. For example, lithium (Li)-ion batteries of electric vehicles can lose thermal stability owing to electrochemical damage due to overheating of the core. In this study, we look at how a different melting point phase change material (PCM) can be used to delay the TR trigger point of a high-energy density lithium-iron phosphate (LiFePO<sub>4</sub>) chemistry 86 Amp-hour (Ah) battery. The battery is investigated under thermal abuse conditions by wrapping heater foil and operating it at 500-W constant heat conditions until the battery runs in an abuse scenario. A comparative time delay methodology is developed to understand the TR trigger points under a timescale factor for different ambient conditions such as 25°C, 35°C, and 45°C. In the present study, two different types of PCMs are selected, that is, paraffin wax which melts at 45°C and Organic Axiotherm (ATP-78) which melts at 78°C. Modeling results suggest that the TR trigger point and peak onset temperature are greatly influenced by the battery operating temperature. The concluded results indicate that by submerging the battery in PCM, the TR trigger point can be greatly delayed, providing additional time for the driver and passenger to evacuate the vehicle. However, the present findings also reflect that fire propagation cannot be completely extinguished due to the volatile hydrocarbon content in the PCM. Hence from this study, it is recommended that whenever using a PCM-equipped passive cooling strategy, thermal insulation should be provided at the wall of the PCM to delay the TR propagation from one battery to another at pack-level configuration.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3