Methanol (M85) Port-Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 2: Dynamic Performance, Transient Emissions, and Catalytic Converter Effectiveness

Author:

Agarwal Avinash1,Yadav Omkar1,Valera Hardikk1

Affiliation:

1. Indian Institute of Technology Kanpur, India

Abstract

<div>Methanol is emerging as an alternate internal combustion engine fuel. It is getting attention in countries such as China and India as an emerging transport fuel. Using methanol in spark ignition engines is easier and more economical than in compression ignition engines via the blending approach. M85 (85% v/v methanol and 15% v/v gasoline) is one of the preferred blends with the highest methanol concentration. However, its physicochemical properties significantly differ from gasoline, leading to challenges in operating existing vehicles. This experimental study addresses the challenges such as cold-start operation and poor throttle response of M85-fueled motorcycle using a port fuel injection engine. In this study, M85-fueled motorcycle prototype is developed with superior performance, similar/better drivability, and lower emissions than a gasoline-fueled port-fuel-injected motorcycle. An open electronic control unit was installed using suitable wiring harness/sensors and actuators to control the engine. Then the motorcycle electronic control unit was calibrated for transient operations on a chassis dynamometer. The motorcycle was tested under road load simulation and wide-open throttle conditions on the chassis dynamometer to compare its performance with a baseline gasoline-fueled motorcycle. Evaluation parameters included power at wheels, maximum vehicle speed, and time-based and speed-based acceleration characteristics. Transient emissions were evaluated following the Indian driving cycle protocols. The effectiveness of the catalytic converter for M85 fueling was assessed by comparing various emissions upstream and downstream of the catalytic converter. M85-fueled motorcycle generated higher power at wheels and similar maximum speeds as baseline gasoline-fueled motorcycle. Fine-tuned M85-fueled motorcycle exhibited superior acceleration characteristics over baseline gasoline-fueled motorcycle, indicating that an appropriate tuning strategy could tackle the issue of “drivability.” M85-fueled motorcycle emitted lower carbon monoxide and hydrocarbon during the warm-up cycles in the Indian driving cycle protocol. The inherent fuel oxygen of M85 enhanced the carbon monoxide–carbon dioxide conversion, reducing carbon monoxide emissions in the engine exhaust. The existing catalytic converter was also suitable for M85 fueling since the hydrocarbon, nitric oxide, and carbon monoxide emissions were effectively reduced downstream of the catalytic converter in all test conditions.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3