Evaluation of an Optimal Engine Configuration for a SI Engine Fueled with Ethanol for Stationary Applications

Author:

Perrone Diego1,Falbo Luigi1,Falbo Biagio1,Castiglione Teresa1

Affiliation:

1. Università della Calabria

Abstract

<div class="section abstract"><div class="htmlview paragraph">This work aims at investigating the optimal configuration of an internal combustion engine fueled with bio-ethanol for improving its brake power and efficiency as well as for reducing the NO<sub>x</sub> emissions, in stationary applications. A turbocharged spark ignition engine characterized by a single-point injection was preliminarily considered; subsequently, a direct injection configuration was investigated. For both cases, a 1-D numerical model was developed to compare the injection configurations under stoichiometric conditions and different spark timings. The analysis shows that the direct injection guarantees: a limited improvement of brake power and efficiency when the same spark timing is adopted, while NO<sub>x</sub> emissions increases by 20%; an increase of 6% in brake power and 2 percentage points in brake thermal efficiency by adopting the knock limited spark advance, but an almost double NO<sub>x</sub> emissions increase. In order to exploit the advantages of the direct injection, an engine configuration characterized by higher compression ratio, lower boost pressure and different cam phasing was proposed. By adopting a spark timing of 23°CA BTDC and a lean mixture (ϕ = 0.8), the engine provides a brake power of 232 kW, a brake thermal efficiency of 42%, which are 4% and 14 percentage points higher than single point configuration, respectively, and NO<sub>x</sub> emissions, amounting to 3 g/kWh, 9% lower with respect to single point injection.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3