Model-Based Algorithm for Water Management Diagnosis and Control of PEMFC Systems for Motive Applications

Author:

Sicilia Massimo1,Cervone Davide1,Polverino Pierpaolo1,Pianese Cesare1

Affiliation:

1. Università Degli Studi Di Salerno

Abstract

<div class="section abstract"><div class="htmlview paragraph">Water management in PEMFC power generation systems is a key point to guarantee optimal performances and durability. It is known that a poor water management has a direct impact on PEMFC voltage, both in drying and flooding conditions: furthermore, water management entails phenomena from micro-scale, i.e., formation and water transport within membrane, to meso-scale, i.e., water capillary transport inside the GDL, up to the macro-scale, i.e., water droplet formation and removal from the GFC. Water transport mechanisms through the membrane are well known in literature, but typically a high computational burden is requested for their proper simulation. To deal with this issue, the authors have developed an analytical model for the water membrane content simulation as function of stack temperature and current density, for fast on-board monitoring and control purposes, with good fit with literature data. The water flow from the catalyst layer to the GFC through the GDL is modelled considering as main transport mechanism the capillary transport. The water coming from the GDL then emerges through the pores inside the channel forming water droplets that interact with the air flow. The authors have developed several papers on this topic: mathematical models have been developed for droplet’s emersion, oscillation, and detachment phases; furthermore, the coalescence between near droplets has been included into the modelling. The authors have also validated with experimental results the proposed models. The objective of this paper is to develop a mathematical model able to represent a typical fuel cell stack in order to predict the water membrane content and the water removal rate, that are fundamental to correctly control the PEMFC system in order to avoid the critical conditions mentioned before, ensuring the best performances of the stack reducing the hydrogen consumption. The model is validated with literature data, showing optimal fit and high correlation, making it suitable for further analyses.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3