Automotive Steering System and Its Controller Design for Intelligent Vehicles

Author:

Zhao Yibing,Chen Yuqiao,Lv Yanqing,Guo Lie

Abstract

<div>With the rapid development of intelligent vehicles technology, it is extremely urgent to solve environmental pollution and energy crisis. The electric intelligent vehicles technology can accelerate the world to move towards low carbonization and intelligence. In this article, one automatic steering system and its controller are designed with this electric vehicle as the verification platform. First, based on the digital mock-up (DMU) module of the CATIA digital prototype, the motion simulation of the automatic steering system is carried out. Then, the transient dynamics and fatigue analysis module from ANSYS Workbench 16.0 software is used to simulate and analyze the transmission mechanism. After verifying the reasonable strength of the real vehicle parts, the original platform steering system is reformed. Our intelligent vehicle uses a monocular charge-coupled device (CCD) to detect road marking lines and then employs a linear two degrees of freedom (2-DOF) vehicle model to establish a preview deviation model based on the visual navigation lane lines. A vehicle lateral control method combining fuzzy logic rules, adaptive proportional-integral-derivative (PID) control strategy, and preview deviation is designed. A lateral controller is built using Simulink software for lane tracking simulation, and a good tracking effect is obtained. Finally, the results of low-speed real vehicle tests show that the vehicle can stably track the target lane line at low-speed conditions.</div>

Publisher

SAE International

Subject

Management, Monitoring, Policy and Law,Engineering (miscellaneous),Aerospace Engineering,Transportation,Automotive Engineering,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3