A Multi-Physics Design Approach for Electromagnetic and Stress Performance Improvement in an Interior Permanent Magnet Motor

Author:

Agrawal Aniruddha1,Sahu Ashish1,Juarez-Leon Francisco Alejandro1,Haddad Reemon Z.1,Al-Ani Dhafar1,Bilgin Berker1

Affiliation:

1. McMaster University, Electrical and Computer Engineering Department, Canada

Abstract

<div>Electric motors constitute a critical component of an electric vehicle powertrain. An improved motor design can help improve the overall performance of the drivetrain of an electric vehicle making it more compact and power dense. In this article, the electromagnetic torque output of a double V-shaped traction IPMSM is maximized by geometry optimization, while considering overall material cost minimization as the second objective. A robust and flexible parametric model of the IPMSM is developed in ANSYS Maxwell 2D. Various parameters are defined in the rotor and stator geometries to perform an effective multi-objective parametric design optimization. Advanced sensitivity analysis, surrogate modeling, and optimization capabilities of ANSYS optiSlang software are leveraged in the optimization. Furthermore, a demagnetization analysis is performed to evaluate the robustness of the optimized design. At high-speed operation, a rotor core is usually subject to higher deformation due to the high centrifugal force. Thus, rotor stresses are reduced in the optimized design by shaping the flux barriers around the permanent magnets. This enables high structural integrity of the optimized design for high-speed operation along with the improved electromagnetic performance. The multi-physics design approach proposed in this article provides the capability to design and optimize an IPMSM geometry for performance and cost, which are essential objectives to achieve in an electrified powertrain development. Moreover, consideration of rotor stress at high operating speeds extends the applicability of the proposed design approach to high-power, high-speed electric propulsion applications.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3