Precise Electrical Machine Stator Winding Modeling for Thermal Analysis of Efficient Cooling Concepts

Author:

Brossardt Nicolas1,Nguyen-Xuan Thinh2,Pfitzner Michael3

Affiliation:

1. BMW Group: Bayerische Motoren Werke AG, Functional Development and Data Management, Germany

2. BMW Group: Bayerische Motoren Werke AG, Development of Electrical Powertrain, Germany

3. Bundeswehr University Munich, Institute for Thermodynamics, Department of Aerospace Engineering, Germany

Abstract

<div>The current development of electric and hybrid electric vehicles has drawn more attention toward the development of electrical machines with high power densities. Though highly efficient, these machines heat up significantly during operation. By design, state-of-the-art water jacket cooling concepts remove the heat mainly through high internal thermal resistances of the electrical machine. The resulting maximum temperatures in the end winding region limit the achievable machine power output. In this study, alternative cooling concepts are presented, which efficiently use the existing heat conduction paths of an electric machine. For this purpose, two modeling methods for the stator windings were developed: a high-resolution approach that considers each individual wire and an abstract approach that uses zones of constant anisotropic thermal conductivity to specify the heat flow in the windings. Both models were used in conjugate heat transfer simulations of a long-term thermal test of the electrical machine integrated in the BMW i3. For both models the validation showed a very good agreement of simulated and measured temperatures. An evaluation of both methods showed the abstract approach to be more efficient than other simulation methods used in the current R&amp;D. Its application for alternative cooling concepts revealed the necessary heat transfer coefficients at different fluid temperatures for a sole convective cooling of the end windings. However, it could be found that a homogeneous temperature distribution in the stator of the machine can only be achieved if a combination of water jacket cooling and convective end winding cooling is used.</div>

Publisher

SAE International

Subject

Fuel Technology,Automotive Engineering,Fuel Technology,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3