Exploration of Fuel Property Impacts on the Combustion of Late Post Injections Using Binary Blends and High-Reactivity Ether Bioblendstocks

Author:

Subramanian Srinath,Rothamer David

Abstract

<div class="section abstract"><div class="htmlview paragraph">In this study, the impacts of fuel volatility and reactivity on combustion stability and emissions were studied in a light-duty single-cylinder research engine for a three-injection catalyst heating operation strategy with late post-injections. N-heptane and blends of farnesane/2,2,4,4,6,8,8-heptamethylnonane were used to study the impacts of volatility and reactivity. The effect of increased chemical reactivity was also analysed by comparing the baseline #2 diesel operation with a pure blend of mono-ether components (CN <i>&gt;</i> 100) representative of potential high cetane oxygenated bioblendstocks and a 25 vol.% blend of the mono-ether blend and #2 diesel with a cetane number (CN) of 55. At constant reactivity, little to no variation in combustion performance was observed due to differences in volatility, whereas increased reactivity improved combustion stability and efficiency at late injection timings. Fuels with higher reactivity were found to reduce engine-out hydrocarbon and carbon monoxide emissions while also achieving stable combustion at post-injection timings later than those achievable with #2 diesel fuel. The pure ether blend had the latest achievable post-injection timing of +30.5 CAD while still maintaining stable combustion (coefficient of variation of gross-indicated mean effective pressure <i>&lt;</i> 5%). With post-injection timing adjusted to achieve a matched exhaust temperature of 300 °C, the ether-diesel CN 55 blend was observed to have slightly higher thermal efficiency in comparison to the baseline #2 diesel fuel. The results also indicate that cetane number may serve as a good indicator of combustion characteristics at late injection timings used for aftertreatment thermal management operation.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3