Analytical and Experimental Studies on Ride Comfort in a Combat Vehicle (CV)

Author:

Chandramohan Sujatha,Sinha Adheesh

Abstract

<div class="section abstract"><div class="htmlview paragraph">Extremely uncomfortable levels of bounce and pitch vibrations are produced when a CV moves over uneven terrain. The present study was carried out to ascertain the vibrational response at the driver’s, commander’s and trooper’s seats. A 23 -degrees of freedom (DOF) lumped parameter 3-D model of a combined CV and human body was made. The vehicle had 15 DOF corresponding to the bounce, pitch and roll of the hull (sprung mass) and bounce motions of the 12 wheel stations (unsprung masses) on either side. The human body was idealized as having 8 DOF corresponding to bounce motions of the pelvis, abdomen, diaphragm, thorax, torso, back and head. The seat was also assigned a bounce DOF. The lumped masses of the body parts were distributed and connected by springs. The differential equations of motion for the linear rigid body model were formulated and the natural frequencies of different parts of the human body and the military tank were determined by eigenvalue analysis using MATLAB. Subsequently, vertical and longitudinal accelerations at the driver's, commander's and trooper's seats were measured on both the Sinusoidal track and Aberdeen Proving Ground (APG) using accelerometers connected to the DEWESoft data acquisition system (DAS). Fast Fourier transform (FFT) spectra and power spectral densities (PSDs) were determined at each location. Also, the measured root mean square (RMS) accelerations computed in 1/3 octave bands were multiplied with ISO weighting factors and were compared with ISO ride comfort boundaries for assessment of ride comfort. Thereafter, exposure values, A(8) and vibration dose value (VDV) were calculated. A full multi-body dynamics model (MBD) was idealized to get insight into the dynamic behavior of the CV. The vibrational response of the CV was simulated during steady-state runs on Sinusoidal and Aberdeen Proving Ground (APG) tracks through MSC ADAMS (ATV) and the results were compared with those obtained from experimental work. The measured acceleration data correlated well with the computed results.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3