Vehicle Outer Body Panel Oil Canning Performance Prediction Using Machine Learning

Author:

Kulkarni Prasad Ramesh1,Sahu Dilip2,Khatavkar Akshay2,Hursad Tushar Haridas2,Patil Sanjay2,Belur Nikhil2

Affiliation:

1. TATA Motors Ltd, Digital Product Development Systems

2. TATA Motors Ltd

Abstract

<div class="section abstract"><div class="htmlview paragraph">Thin plates buckle after applying load and return to normal position after the load is released, this process is called oil canning. Waviness in thin panels can be seen on various plates of metals. Oil canning is a major issue if panels are too thin and these panels create vibration and noise in the vehicle body panel. If the panels are wider, then there are more chances of oil canning issues. Different digital simulations and physical techniques are currently available to check the canning performance, but they required geometrical data and physical setup. In this paper machine learning (ML) approach to predict the oil canning performance is presented. This approach adds a new process to the existing process of vehicle door design, but it helps avoid the number of simulations and unwanted structural modifications at the early design stage, making it a handy and powerful tool for the designer.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3