Battery Sizing, Parametric Analysis, and Powertrain Design for a Class 8 Heavy-Duty Battery Electric Truck

Author:

Salek Farhad,Halder Pobitra,Thomas Leonard Aiden,Babaie Meisam,Resalati Shahaboddin,Zare Ali

Abstract

<div class="section abstract"><div class="htmlview paragraph">Electrification of the transportation sector requires an energy-efficient electric powertrain supported by renewable sources of energy to limit the use of fossil fuels. However, the integration of battery electric powertrains in heavy-duty trucks seems more challenging than other types due to the high battery demand and negative impacts on the truck’s cargo capacity. In this paper, the battery sizing of a 41-tons Mercedes Actros truck is performed based on battery safety zone operating conditions. A parametric study is conducted to assess the impacts of sizing on a truck’s total cargo capacity as well as the body dynamic parameters. The numerical model of the Mercedes Actros electric powertrain is developed in AVL CRUISETM M software. The hybrid pulsed power characterization tests are performed on 3Ah lithium-ion NMC cells in the lab for fitting the second-order equivalent circuit model’s parameters used in the analysis. There are 6 battery packs with 456 to 684 kWh capacity each installed as an energy source for the powertrain based on the conditions of standard long-haul driving cycle. In parametric analysis, the battery capacity increased in the pre-mentioned range and its impacts on the final state of charge (SoC), pack voltage and road force on the truck’s cabin are assessed. The results of the parametric study have indicated that for putting the battery energy storage system in a safe operating zone (SoC would be between 80% and 30%), each battery pack capacity should be around 104.5 kWh resulting in a reduction of cargo capacity by 24.88% after electrification. The sharp road inclinations above 5% would result in non-negligible effects of the battery pack size variations on the truck chassis load.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3