Analysis of a Full-Stack Data Analytics Solution Delivering Predictive Maintenance

Author:

Hoyt Nathan,Smith Nathaniel,Tenny Joe,Hovanski Yuri

Abstract

<div class="section abstract"><div class="htmlview paragraph">With the developments of Industry 4.0, data analytics solutions and their applications have become more prevalent in the manufacturing industry. Currently, the typical software architecture supporting these solutions is modular, using separate software for data collection, storage, analytics, and visualization. The integration and maintenance of such a solution requires the expertise of an information technology team, making implementation more challenging for small manufacturing enterprises. To allow small manufacturing enterprises to feasibly obtain the benefits of Industry 4.0 data analytics, a full-stack data analytics framework is presented, and its performance evaluated as applied in the common industrial analytics scenario of predictive maintenance. The predictive maintenance approach was achieved by using a full-stack data analytics framework comprised of the PTC Inc. Thingworx software suite. When deployed on a lab-scale factory, there was a significant increase in factory uptime in comparison with both preventive and reactive maintenance approaches. The predictive maintenance approach simultaneously eliminated unexpected breakdowns and extended the uptime periods of the lab-scale factory. This research concluded that similar or better results may be obtained in actual factory settings, since the only source of error on predictions in the testing scenario would not be present in real world scenarios. An analysis of the effect of downtime period durations and discussion on the cost of reactive maintenance and associated breakdowns is also presented.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3