Simulation Study on EGR Condensate Flow and Uniformity of Each Cylinder in the Intake Manifold

Author:

Pan Shiyi1,Li Guanting2,Wang Jinhua3,Zhang Nan2,Xu Zhiqin2,Chen Shanghua2,Chen Jun2,Zhao Shengwei2

Affiliation:

1. Xian Jiaotong University

2. BYD Auto Industry Company Limited

3. Xian Jiaotong University, State Key Laboratory of Multiphase

Abstract

<div class="section abstract"><div class="htmlview paragraph">As engine technology developed continuously, engine with both turbocharging and EGR has been researched due to its benefit on improving the engine efficiency. Nevertheless, a technical issue has raised up while utilizing both turbocharging and EGR at the same time: excess condensed water existed in intake manifold which potentially trigger misfire conditions. In order to investigate the root-cause, a CFD model (conducted by CONVERGE CFD software) was presented and studied in this paper which virtually regenerated intake manifold flow-field with EGR condensed water inside. Based on the simulated results, it concluded that different initial conditions of EGR condensed water could significantly change the amount of water which deposited in each cylinder. Thus, a coefficient of variation of deposited condensed water amount among these cylinders, was marked as the evaluation reference of cylinder misfire. Theoretically, as this coefficient of variation reduced, the EGR condensed water from intake manifold would be distributed homogeneously in each cylinder, and thus less possibility of cylinder misfire should be observed. As concluded from the presented multiple simulated results, the coefficient of variation of deposited condensed water amount was above 30% statically for the existing intake manifold, which meant the existing intake manifold had tremendous room for optimization. The result showed that the fluctuation of the inner surface of the intake manifold had a great impact on the flow of condensate water, so different surface shapes could be designed in the intake manifold to organize the flow of condensate water, so as to make the condensate water of each cylinder more uniform, and reduce the occurrence of fire.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3