A Synergic Use of Innovative Technologies for the Next Generation of High Efficiency Internal Combustion Engines for PHEVs: The PHOENICE Project

Author:

TAHTOUH Toni,Millo Federico,Rolando Luciano,Castellano Giuseppe,Brignone Mauro,Cleeton Jason,Demeilliers Nicolas,Lucignano Gennaro,Sierra Castellanos Juan,Perazzo Alessandro

Abstract

<div class="section abstract"><div class="htmlview paragraph">Despite the legislation targets set by several governments of a full electrification of new light-duty vehicle fleets by 2035, the development of innovative, environmental-friendly Internal Combustion Engines (ICEs) is still crucial to be on track toward the complete decarbonization of on road-mobility of the future. In such a framework, the PHOENICE (PHev towards zerO EmissioNs &amp; ultimate ICE efficiency) project aims at developing a C SUV-class plug-in hybrid (P0/P4) vehicle demonstrator capable to achieve a -10% fuel consumption reduction with respect to current EU6 vehicle while complying with upcoming EU7 pollutant emissions limits.</div><div class="htmlview paragraph">Such ambitious targets will require the optimization of the whole engine system, exploiting the possible synergies among the combustion, the aftertreatment and the exhaust waste heat recovery systems. Focusing on the first aspect, the combined use of innovative in-cylinder charge motion, Miller cycle with high compression ratio, lean mixture with cooled EGR and electrified turbocharger will enable a highly diluted combustion process capable to achieve a peak indicated efficiency of 47% and, at the same time, to minimize the engine out emissions. Numerical simulations were intensively exploited to reduce the engine calibration time and to preliminary assess the benefits of the abovementioned technologies. In particular, 3D-CFD simulations highlighted the capabilities of the Swumble<sup>TM</sup> intake ports to produce an increase of about 50% of the Turbulent Kinetic Energy (TKE), while 1D-CFD models showed possible further enhancements of the brake thermal efficiency through the use of the new turbocharger (+2%) and of an aggressive Millerization of the cycle (+1.1%).</div><div class="htmlview paragraph">Finally, a preliminary experimental campaign, performed on the first engine prototype, confirmed the encouraging results of the simulation activity. With an AFR = 1.43 and an EGR ratio close to 5%, the PHOENICE engine showed a further improvement in the BTE up to 4% and a simultaneous reduction of the NOx emissions of more than 70% in comparison with conventional stoichiometric, undiluted operation.</div></div>

Publisher

SAE International

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3