Aerodynamic Investigation by Computational Fluid Dynamics to Exterior Design Modifications in a Simplified Bus Model

Author:

Özcan Onur,Yıldız Alp Eren

Abstract

<div class="section abstract"><div class="htmlview paragraph">Exterior design modifications have crucial importance on vehicle aerodynamics. Therefore, it makes one of the key parameters to achieve to reduce the fuel consumption in diesel-, CNG-, and hybrid-powered engines and increase the range of electric vehicles (EVs). The slightest change in the vehicle exterior design can directly affect the vehicle aerodynamics. Thus, four different parameters (front windshield angle, front diffuser angle, rear diffuser angle, and fillet [bending] on the rear and front top) are reviewed on a conceptual 12 m long bus which is to be designed at Anadolu Isuzu. Computational fluid dynamics (CFD) simulations become a source for comparative evaluations in these studies. Simulations are carried out for all different models with a realizable k-epsilon turbulence model and enhanced wall treatment wall function. In conclusion, a positive aerodynamic effect is observed with parameters that are the windshield, front diffuser angle, and fillet on the rear and front top ends. On the other hand, a negative aerodynamic effect is observed when rear diffuser angle is applied. All simulations are compared based on drag coefficient values. The front windshield angle is found the most influential parameter on a conceptual vehicle design that can be provided a drag coefficient reduction of up to 51%.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3