Characterization of an Integrated Three-Way Catalyst/Lean NOx Trap System for Lean Burn SI Engines

Author:

Sandhu Navjot Singh1,Leblanc Simon1,Yu Xiao1,Reader Graham1,Zheng Ming1

Affiliation:

1. Univ of Windsor

Abstract

<div class="section abstract"><div class="htmlview paragraph">The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. Modern spark ignition (SI) engines typically employ various in-cylinder emission reduction techniques along with a three-way catalyst (TWC) based exhaust after-treatment system to comply with emission standards. However, the periodic lean-rich oscillations for this TWC system necessitate the SI engine to operate at near stoichiometric mixture conditions, which limits the viability of lean burn for SI engines. Lean NOx trap (LNT) system can reduce the engine out NOx under lean conditions at a cost of fuel efficiency penalty due to regeneration. In the present study, the feasibility of using a coupled TWC-LNT system with extensive dilution to achieve ultra-low tailpipe emissions is investigated. Relevant engine-out exhaust conditions from an SI engine, including flow, temperature, and exhaust species, operating at different dilution conditions were replicated on a heated aftertreatment flow bench. A comprehensive analysis of species before and after the catalyst sections was performed using Fourier-transformed infrared (FTIR) and mass spectrometers to study and quantify the conversion and formation of species, including ammonia, methane, and hydrogen, under different engine-out conditions. The results the integration of LNT to a TWC catalyst improves the conversion efficiency of reducing species during the lean operation period. TWC and LNT catalyst simultaneously achieve high conversion efficiency at ~350°C. The LNT regeneration behavior is noticeably affected by the presence of preceding TWC catalyst. The temperature rise because of the oxidation reactions on TWC can deteriorate the LNT regeneration efficiency beyond 400°C.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Catalytic NO<sub>x</sub> Aftertreatment—Towards Ultra-Low NO<sub>x</sub> Mobility;International Journal of Automotive Manufacturing and Materials;2024-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3