In Line Nondestructive Testing for Sheet Metal Friction Stir Welding

Author:

Hunt Johnathon,Larsen Brigham,Hovanski Yuri

Abstract

<div class="section abstract"><div class="htmlview paragraph">As automotive designs add more aluminum to lightweight their vehicles, friction stir welding (FSW) will likely become a principal joining process in the industry. FSW is a solid-state joining process which avoids many of the traditional problems of welding aluminum alloys such as hot cracking, porosity and solidification shrinkage. These attributes enable high preforming friction stir welded joints of cast, 5XXX, 6XXX, 7XXX or mixed aluminum alloy combinations. Although FSW technologies have advanced to support high volume applications and have been applied in current automotive parts, its inability for nondestructive evaluation (NDE) increases the cost to manufacture friction stir welded parts. Current state of the art NDE methods for FSW are either ultrasound or radiographic technologies which add complexity to manufacturing lines and additional costs to FSW production. Many have researched ways to reduce NDE costs by using measured forces of the FSW process. These methods have included trained neural networks (NN) that result in accurate defect predictions that can be applied in an industrial setting. Although NN provide an alternative solution to traditional NDE methods, they require large amounts of training and can only inspect welds that share exact welding parameters and machinery that were included in the training. An ideal FSW NDE method would reduce costs and be able to be applied on multiple welding machines and with a variety of parameters. The cost of a cited generalized force based stochastic NDE method in an industrial setting will be validated by an automotive production example here in.</div></div>

Publisher

SAE International

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3