One Robust Loosely Coupled 4D Millimeter-Wave Image Radar SLAM Method

Author:

Zhao Yingzhong1,Lu Xinfei1,Ye Tingfeng1

Affiliation:

1. Shanghai Geometrical Perception and Learning Co., Ltd.

Abstract

<div class="section abstract"><div class="htmlview paragraph">In this paper, we introduce one imu radar loosely coupled SLAM method based on our 4D millimeter-wave image radar which it outputs pointcloud containing xyz position information and power information in our autonomous vehicles. at common pointcloud-based slam such as lidar slam usually adopt imu-lidar tightly coupled structure, which slam front end outputs odometry reversly affect imu preintegration. slam system badness occurs when front end odometry drift bigger and bigger or one frame pointcloud match failed. so in our method, we decouple imu and radar odometry crossed relationship, fusing imu and wheel odometry to generate one rough pose trajectory as initial guess value for front end registration, not directly from radar estimated odometry pose, that is to say, front end registration is independent of imu preintegration. besides, we empirically propose one idea juding front end registration result to identify match-less environment and adopt relative wheel odometry pose instead of registration pose when match belief value(mbv) is false. this can handle some degrade environment, such as two-side similar greenbelt. finally, to increase loop detection robustness, we propose two-stage loop detection verify method. first stage is RS(radius search) method, if it passes loop verify, not enter second stage, otherwise enter SC(scan context) second stage, after two stage loop, most real loop can be detected by our slam system. based on above ideas, at multi scene’s datasets, office park, residential area, open road, underground parkingplace etc, we can run our slam system successfully, meanwhile at our office park dataset we compare trajectory precision with tightly-coupled slam structure and the detected loop number with one stage loop method, exprimental result proved our proposed method is valid.</div></div>

Publisher

SAE International

Reference16 articles.

1. Zhuge , H. A 4D Imaging Radar SLAM System for Large-Scale Environments Based on Pose Graph Optimization 2023 https://dr.ntu.edu.sg/handle/10356/165315 .

2. Forster , C. , Carlone , L. , Dellaert , F. , and Scaramuzza , D. 2015 10.15607/rss.2015.xi.006

3. Kaess , M. , Johannsson , H. , Roberts , R.D. , Ila , V. et al. iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree The International Journal of Robotics Research 31 2 2012 216 235 10.1177/0278364911430419

4. Biber , P. and Strasser , W. The Normal Distributions Transform: A New Approach to Laser Scan Matching Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453) n.d. 10.1109/iros.2003.1249285

5. Kim , G. and Kim , A. Scan Context: Egocentric Spatial Descriptor for Place Recognition Within 3D Point Cloud Map 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2018 10.1109/iros.2018.8593953

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3